3 research outputs found

    Noise Efficient Integrated Amplifier Designs for Biomedical Applications

    Get PDF
    The recording of neural signals with small monolithically integrated amplifiers is of high interest in research as well as in commercial applications, where it is common to acquire 100 or more channels in parallel. This paper reviews the recent developments in low-noise biomedical amplifier design based on CMOS technology, including lateral bipolar devices. Seven major circuit topology categories are identified and analyzed on a per-channel basis in terms of their noise-efficiency factor (NEF), input-referred absolute noise, current consumption, and area. A historical trend towards lower NEF is observed whilst absolute noise power and current consumption exhibit a widespread over more than five orders of magnitude. The performance of lateral bipolar transistors as amplifier input devices is examined by transistor-level simulations and measurements from five different prototype designs fabricated in 180 nm and 350 nm CMOS technology. The lowest measured noise floor is 9.9 nV/√Hz with a 10 µA bias current, which results in a NEF of 1.2

    Additive Manufacturing of E-Plane Cut Dual-Mode X-Band Waveguide Filters With Mixed Topologies

    No full text

    Biologically inspired and energy-efficient neurons

    No full text
    Silicon neurons represent different levels of biological details and accuracies as a trade-off between complexity and power consumption. With respect to this trade-off and high similarity to neuron behaviour models, relaxation-type oscillator circuits often yield a good compromise to emulate neurons. In this chapter, two exemplified relaxation-type silicon neurons are presented that emulate neural behaviour with energy consumption under the scale of nJ/spike. The first proposed fully CMOS relaxation SiN is based on mathematical Izhikevich model and can mimic a broad range of physiologically observable spike patterns. The results of kinds of biologically plausible output patterns and coupling process of two SiNs are presented in 0.35 μm CMOS technology. The second type is a novel ultra-low-frequency hybrid CMOS-memristive SiN based on relaxation oscillators and analog memristive devices. The hybrid SiN directly emulates neuron behaviour in the range of physiological spiking frequencies (less than 100 Hz). The relaxation oscillator is implemented and fabricated in 0.13 μm CMOS technology. An autonomous neuronal synchronization process is demonstrated with two relaxation oscillators coupled by an analog memristive device in the measurement to emulate the synchronous behaviour between spiking neurons
    corecore